
COMPUTER VISION DETECTION OF 
EXPLOSIVE ORDNANCE: 

T he detection of explosive ordnance (EO) objects is experiencing a period of innovation driven by 
the convergence of new technologies including artificial intelligence (AI) and machine learning, open-
source intelligence (OSINT) processing, and remote mobility capabilities such as drones and robotics.1  

Advances are being made on at least two tracks: in the automated searching of photographic image archives, 
and in the real-time detection of objects in the field.2 Different technologies are responsive to different types 
of EO detection challenges, such as objects that are buried, semi-buried, or partially damaged.

Computer vision—a type of artificial intelligence (AI) that enables computers and systems to derive meaningful 
information from digital images, videos, and other visual inputs, and take actions or make recommendations 
based on that information—is a promising AI technology that can greatly enhance humanitarian mine action 
(HMA), as well as support evidentiary documentation of the use of EO that are prohibited under international 
humanitarian law. This article describes a computer vision algorithm creation workflow developed to automate 
the detection of the 9N235/9N210 cluster submunition, a heavily deployed munition in the Ukraine conflict. 
The six-step process described here incorporates photography, photogrammetry, 3D-rendering, 3D-printing, 
and deep convolutional neural networks.3 The resulting high-performance detector can be deployed for 
searching and filtering images generated as part of OSINT investigations and soon, for real-time field 
detection objectives.

 9N235/9N210 SUBMUNITION 

The 9N235 and 9N210 are nearly visually identical high-
explosive fragmentation submunitions (i.e., the explosive 
elements of cargo rocket-delivered cluster munitions). 
Upon detonation, the explosive payload blasts metal 
fragments in all directions, indiscriminately killing or 
maiming bystanders, including non-combatant civilians. 
The munition has been widely documented in the Ukraine 
conflict.4 While neither Russia nor Ukraine are party to the 
Convention on Cluster Munitions ,5 they are both bound by 
the Additional Protocol II of Geneva Conventions, which 
prohibits indiscriminate attacks.6 

 Based on these considerations, the distinctive visual 
appearance of the 9N235/9N210, and the fact that the 
object has a well-documented design flaw that leads 
to frequent failed detonation resulting in widespread 
unexploded ordnance (UXO) contamination,7 VFRAME 

selected the 9N235/9N210 as a candidate for object 
detection development.8 To test the hypothesis, we built 
and evaluated an object detector.  

Figure 1. 3D visualization of finalized 
9N235 photogrammetry model. 

Figure courtesy of Adam Harvey.
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BUILDING A DETECTOR
experiments, data is generated from the ground-truth 
up using an interdisciplinary combination of photography, 
photogrammetry, 3D-rendering, 3D-printing, custom 
software, and artistic replication. Using this approach, a 
high-performance 9N235/9N210 detector was developed 
with almost no data from online sources, except for use in 
the final benchmarking dataset to evaluate the algorithm’s 
performance.

The first step bypasses the Internet as a source of 
data and instead uses access to the real submunition 
as the ground-truth source of data as a 3D model, using 
photogrammetry.

The initial challenge for building a computer vision-
based object detector for this munition was a lack of a 
sufficient number of diverse reference photographs of 
the object. While the number of online photographs of the 
9N235/9N210 has increased in 2023, they still only reach 
the hundreds, with many duplicates. After splitting the 
remaining pool for training, validation, and test datasets, 
there is insufficient data for training a robust object 
detector.

An innovative approach to building neural networks 
using art-driven, data-centric development, developed by 
VFRAME, overcomes this challenge. Instead of scraping 
biased images online or setting up sterile laboratory 

STEP 1: PHOTOGRAMMETRY
 

Figure 2. Capturing the original 9N235/9N210 
submunition using photogrammetry with an 

automated turntable and DSLR camera. 
Courtesy of Adam Harvey.  

Photogrammetry is the process of using multiple high-
resolution photos to reconstruct an object’s 3D geometry 
and surface texture, via the structure from motion 
(SfM) technique. Creating 3D scan models of physical 
objects has become increasingly simplified over the last 
decade, but there are many trade-offs between different 
software, camera, and capture approaches. There are 
also dedicated handheld 3D scanners and smartphone 
devices that simplify the process further by integrating 
high-end depth sensors with on-device photogrammetry 
processing.9 There is no single best approach. For this 
project, the goals were high-accuracy, portability, and the 
ability to utilize existing hardware, in this case a digital 

single-lens reflex (DSLR) camera and graphics processing 
unit (GPU) workstation. 

The most important aspect is not the technology but 
finding safe access to a free-from-explosive (FFE) munition. 
The munition must be undamaged, as damaged areas will 
become part of the ground-truth geometry, representative 
of the object as it appears in conflict zones, and not 
significantly altered during the FFE conversion. 

 To access the 9N235/9N210 submunition, VFRAME 
partnered with Tech 4 Tracing, an international, non-
profit partnership of arms control and new technology 
experts working to apply new technologies to arms and 

Figure 3. Photogrammetry scan of 
the 9N235 submunition by VFRAME in 

collaboration with Tech 4 Tracing. 
Courtesy of Adam Harvey. 
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ammunition control.10 In the early spring of 2022, both 
teams traveled to an armed forces explosive ordnance 
disposal (EOD) center in Europe and carried out the 
photogrammetry capture. In total, about 200 high-
resolution photos were used to create the 9N235/9N210 
3D model using an automated turntable to expedite the 
process. Each marker in Figure 3 shows the camera 
position for each photo.

After post-processing the photos and completing the 3D 
reconstruction process, the final result is a sub-millimeter-
accurate 3D model. This becomes an ideal ground truth 
for generating synthetic training data. 

Typically, training images for computer vision detection 
are gathered from online sources or from existing 
imaging systems, such as closed caption TV. Images 
are then manually annotated in-studio or outsourced 
to image annotation services in foreign countries. But 
this methodology creates multiple issues, among them 
data security, data bias, labor exploitation, cost, and the 
possibility of errors.

The use of synthetic data solves many of these 
problems because the annotations are automatically 
generated by software, diversity and bias can be 
controlled for, weather conditions can be programmed, 
and it can lower the overall cost. For these reasons, it 
is a transformative technology, especially for detecting 
rare and dangerous objects such as cluster submunitions. 

STEP 2: 3D RENDERED SYNTHETIC DATA
 

To develop the 9N235/9N210 synthetic training dataset, 
over 10,000 unique images were rendered using various 
lighting environments, scene compositions, dirt variations, 

damage variations, and camera lenses—each of which can 
be deliberately controlled. This is achieved using a custom 
software application based on the Blender 3D rendering 
software.

Using synthetic image data, the way the object appears 
matches observations from the preliminary research: 
it reflects how the submunition lands, the material 
properties and weathering effects, and the terrain in 
which it is documented. Often, the submunition is lodged 
into a soft ground surface with all six of its black tail 
fins pointing upright. Sometimes the tail fins will break, 
leaving a metal tube with various permutations of one to 

Figure 5. 3D-rendered image with a 9N235 
submunition used in the training dataset. 

Courtesy of Adam Harvey. 

Figure 6. Auto-generated mask and 
bounding box values for training data. 

Courtesy of Adam Harvey. 

Figure 4. Rendering. 
Courtesy of Adam Harvey. 
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six integral or partial fins visible, or none. These variables 
can also be modeled. But at some point, either through 
extensive damage or majority occlusions, the object is no 
longer integral and should not be detected, for example 
when only a minority of the metal is visible and with no 
fins. Controlling confidence levels for false positives is also 
important, especially for large-scale OSINT analyses. 

The example images were rendered using a simulated 
40mm lens on a DSLR type sensor with F5.6 aperture 
using afternoon lighting and center-focused on the 9N235 
with all six fins intact. To improve diversity, every image 
is procedurally randomized and then manually reviewed 
to ensure the training data aligns with the expected 
outcomes. This is merely one of over 10,000 randomized 
training images created for the training dataset. 

 

STEP 3: 3D-PRINTED SYNTHETIC DATA 

With enough work, 3D-rendered images can achieve 
convincing photorealism but still contain artifacts of a 
simulated world and risk overfitting if the target objects are 
too rigid or lack diversity, such as occlusions, corrosion, or 
observer biases. There is a growing field of research that 
explores how to bridge the gap between simulation and 
reality, also referred to as the domain gap. However, this 
approach assumes that the simulated or rendered world 
is significantly different from the “real” world. Instead, the 
VFRAME project employs the concept of mixed reality 

Figure 7. 3D printing multi-part 9N235 
submunition replica for use in simulated 
benchmark photos and videos.
Courtesy of Adam Harvey.

data and hybrid training based on the idea that all worlds 
contain artifacts, which all need to be aligned toward the 
target domain for successful model development. Based 
on our research carried out over the last several years, 
object detection algorithms trained on synthetic data will 
always overfit and produce overconfident and misleading 
results if only 3D-rendered synthetic images are used in 
the test dataset. This is logical because the test dataset 
is comprised of the same synthetic features and textures 
used in the training images. It is not an inherent problem 
of 3D-rendered synthetic data, rather of basic overfitting. 
To overcome this problem, VFRAME has pioneered a 
hybrid approach that uses 3D-printed data to generate 
synthetic images in the “real world.” This enables the 
neural network to learn important features from both 
worlds during training.

Figures 8 and 9. Real and replica 
9N235/9N210 submunitions. 

Figures courtesy of Adam Harvey.

.  

63ISSUE 27.2 | SUMMER 2023



3D-printed synthetic data (or just 3D-printed data) 
refers to the process of creating a 1:1 physical replica 
of an object using 3D-scanning, 3D-printing, and artistic 
replication. By recreating the digital surrogate object in 
the real world, this process escapes the limitations of 
3D-rendered worlds and bridges the gap toward a “more 
real” reality. In other words, the 3D-printed replica can 
now be placed in a controlled staging environment to 
create scenes that would otherwise be too complex or 
costly to 3D model.

Figure 10. Sixty-four images from the 9N235 benchmark dataset created using the 3D printed replica.
Courtesy of Adam Harvey.

 Another significant advantage of using 3D-printed data 
for submunitions is safety. Obtaining submunitions always 
involves risk, and removing the explosives material to 
make it FFE involves further risk for EOD personnel. The 
3D-printed replicas are inert, hollow, plastic, and can be 
made using environmentally responsible bioplastics like 
polylactic acid (PLA).

 The results can be convincingly real. Figures 8 and 9 
are photos of 9N235/9N210 submunitions. One is real and 
one is a replica. Both are covered in mud and photographed 
with the same camera in wet forest terrain.

STEP 4: BENCHMARK DATA

With the submunition 3D-modeled, synthetic images 
3D-rendered, and 3D-printed models photographed, the 
next step is to curate the object detection benchmark 
dataset to evaluate how well the neural network can detect 
the object. Benchmark data is essential for understanding 

the accuracy of the trained object detector. An easy 
benchmark dataset yields unrealistic expectations for what 
the detector is capable of. To overcome bias in benchmark 
data, it is helpful to make use of data generated across 
many seasons, terrain, contributors, and hardware. Images 
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Source Instances

Photos and video frames with mixed replica and FFE 722

Photos and video frames with only replica 606

Photos and video frames of real FFE 727

Photos from social media 44

Total 9N235/9N210 benchmark annotations 2,099

Table 1. Need caption.should contain easy, medium, and difficult scenarios. Not 
only is diversity useful for the model metrics, but it helps 
communicate to end users how well the detector can be 
expected to perform when, for example, a munition is 
partially exploded, broken or partially buried, or when it 
will trigger false positives on similar looking objects. This 
is especially important for objects that pose safety and 
security risks for field operators.

The results also help guide the thresholds settings 
for “greedy” or “conservative deployments,” where false 
positive rates are balanced with higher true positive 
(recall) rates. Because the output is always a probabilistic 
determination, the actual deployment thresholds must 
be customized to the target environment. For example, 
a million-scale OSINT video analysis project could first 
triage everything above 90 percent accuracy, then look 
deeper at lower confidence (79 percent) matches when 

STEP 5: MODEL EVALUATION METRICS
 

time permits. The more permissive threshold will usually 
locate more objects, but at the expense of more false 
positives. In another example, an aerial survey of an attack 
site could start with a low-confidence threshold because 
the environment is more constrained and any object 
slightly resembling the target munition could be analyzed 
further by zooming in.

 

The model is trained using synthetic data but evaluated 
using multiple types of real data, including images sourced 
online. The most common metrics are applied to measure 
how well it can detect the true positives (recall), how well 
it ignores the false positives (accuracy), and how precise 
the bounding boxes are. The two most important metrics 
for OSINT—precision and recall—are combined into one 
score called the F1 metric to broadly summarize expected 
model performance on other datasets.

 For this 9N235/210 model, the F1 score is 0.98 at 0.641 
confidence. This means that when setting the confidence 
threshold in the processing software, one should expect 
high-accuracy results, with only a few images missed. 
To detect more true positive objects, thereby increasing 
the recall, the confidence could be dropped toward 0.0, 
but this would trigger more false positives and decrease 
accuracy toward 0.2, which could be acceptable in certain 
scenarios.

An important caveat here is that these numbers are 
entirely dependent on the quality of a test dataset that is 
not transparently disclosed. This points to a larger issue 
with evaluating AI tools for mine and EO object detection: 
without officially recognized and accessible benchmark 
data, developers can too easily claim high success rates, 
overhyping technology and potentially eroding trust if the 
results do not deliver as advertised.

To promote transparency and benchmark dataset 
integrity, the VFRAME project and Tech 4 Tracing are 
working toward the establishment of a voluntary and 

collaborative multi-party oversight committee to ensure 
AI models can be fairly evaluated through certified 
benchmark datasets. Until then, computer vision model 
metrics should not be entirely dismissed but rather be 
understood as a limited window of visibility into future 
real-world performance.

This limited window is still an important and widely 
used starting point to understand models. And the 
VFRAME 9N235 test dataset does include many diverse 
samples of objects in real situations from current conflicts 
sourced both online, from mine clearance operators, and 
from our own field missions. Sharing benchmark data 

Figure 11. An example image from the VFRAME 
9N235/9N210 benchmark dataset showing a 
partially exploded 9N235 photographed while 

 on a field mission to Ukraine in 2023.
Courtesy of Adam Harvey. 
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from each source has a different set of issues: synthetic 
data could fuel misinformation and lower trust in OSINT 
documentation; data collected in the field could reveal 
sensitive geographic information; and data from mine-
clearance operators in an active combat zone raises other 
security issues.

With these caveats in mind, the test dataset model 
metrics can still provide helpful insights. The confusion 
matrix shows the number of true positive detections (2076) 
compared to the false negative (23) and false positive (63). 
For objects like the 9N235/9N210 that can be significantly 

STEP 6: TEST IMAGES

Figure 13. Model metrics for the 9N235/210 detector 
trained with the YOLOV5 framework.
Courtesy of Adam Harvey.
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Figure 12. Confusion matrix for the 9N235/210 detector 
trained with the YOLOV5 framework.
Courtesy of Adam Harvey.

Figure 14. Test on low quality camera with motion 
blur using real FFE and 9N235/9N210 surrogate 

(replica) fabricated by Fenix Insight. 
Figure courtesy of Adam Harvey.
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damaged and appear in multiple parts, there will always 
be small amount of variance in the metrics resulting from 
the intentional non-detection of shrapnel to avoid false 
positives. For example, the 9N235/210 tube without the 
nosecone or fins simply becomes a metal tube. This would 
be impractical to detect for OSINT tasks but would likely 
be useful for mine clearance. Detecting or avoiding metal 
tube detections is a result of tuning the threshold and the 
training dataset for the target domain.

In Figure 14, an example scene was constructed to 
check how well the detection algorithm differentiates 
from similar looking objects. The objects in the scene were 
made of the same material (false positives) yet were all 
successfully ignored while the submunition replicas (true 
positives) were correctly detected. These types of test 
images are useful not only during technical evaluation but 
also for visually communicating how well the detector can 
be expected to perform in similar scenes where similar 
looking objects are likely to appear.

THE JOURNAL OF CONVENTIONAL WEAPONS DESTRUCTION66



Figure 15. Detection results on 
social media reference imagery.

Courtesy of https://bit.ly/3Mtw9Pl.

Figure 16. Detection result on 
social media reference imagery. 

Courtesy of https://bit.ly/3ZKxxQI.

Figure 17. Detection result on 
social media reference imagery. 

Courtesy of https://bit.ly/417PUQH.

Finally, Figures 15, 16, and 17 
illustrate expected performance 
in the OSINT domain, using 
images from the social media 
test set partition. Consider 
that these images were taken 
using different cameras then 
compressed during publication 
to social media platforms. 
Because the detection algorithm 
was trained specially to handle 
watermarks, lens distortion, and 
compression artifacts, the results 
are still accurate even when the 
submunition is partially occluded 
and still lodged inside the carrier 
rocket.

Compared to previous conflicts 
analyzed with the VFRAME 
software, the images and videos from Ukraine are measurably 
higher quality and higher resolution. Understanding how resolution 
shifts in different regions, and will continue to increase in the 
future, aligns well with the synthetic training workflow which can 
be customized to generate compressed lower-resolution imagery 
to match older conflict zone media or used to generate sharper 
higher-resolution training data for current and future conflict 
zone analysis.

CONCLUSION

The multi-step process described here has shown 
success in detecting an EO object with distinctive features 
in photographic and video images exhibiting a wide range 
of lighting and weather conditions and object orientations. 
Its high performance makes it suited for detecting the 
9N235/9N210 in OSINT applications given typical source 
image artifacts including watermarks, compression, and 
light motion blur, and various image ratios. With support 
from the European Commission,12 the next phase of this 
initiative will focus on optimizing a version designed for 
aerial deployment in drones, building a library of other 
priority EO object detector models, and the design of a 
mobile application for real-time field documentation and 

PERFORMANCE

data collection. Eventual systematic deployment should 
also meet accountability principles for security uses 
of artificial intelligence and best practices for image 
authentication and digital evidence standards to ensure 
that detection data is admissible in legal accountability 
mechanisms.13

 This project is an example of new technology-based 
innovations that will continue to improve mine action and 
humanitarian and human rights investigators’ ability to 
detect a range of conventional arms and ammunition in 
a variety of contexts and thereby help save lives and hold 
perpetrators accountable for the misuse of prohibited 
weapons.

The YOLOV5 model is trained from scratch in multiple architectures with an aggressive custom augmentation process 
and then exported for deployment on workstations or mobile/edge devices. Running on a HEDT (high-end desktop 
workstation), it achieves a maximum 187 FS with the nano architecture and the full performance (recommended) model 
reaches forty-three FPS (see figure 18).
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Figure 18. Frames per second on NVIDIA 3090 at 1280 pixels inference size averaged over one 
hundred iterations for nano, small, medium, and large YOLOV5 architectures at batch size eight 
using .pt model format.
Figure courtesy of Adam Harvey.
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